38 research outputs found

    On the Exact Security of Schnorr-Type Signatures in the Random Oracle Model

    Get PDF
    The Schnorr signature scheme has been known to be provably secure in the Random Oracle Model under the Discrete Logarithm (DL) assumption since the work of Pointcheval and Stern (EUROCRYPT \u2796), at the price of a very loose reduction though: if there is a forger making at most qhq_h random oracle queries, and forging signatures with probability εF\varepsilon_F, then the Forking Lemma tells that one can compute discrete logarithms with constant probability by rewinding the forger O(qh/εF)\mathcal{O}(q_h/\varepsilon_F) times. In other words, the security reduction loses a factor O(qh)\mathcal{O}(q_h) in its time-to-success ratio. This is rather unsatisfactory since qhq_h may be quite large. Yet Paillier and Vergnaud (ASIACRYPT 2005) later showed that under the One More Discrete Logarithm (OMDL) assumption, any \emph{algebraic} reduction must lose a factor at least qh1/2q_h^{1/2} in its time-to-success ratio. This was later improved by Garg~\emph{et al.} (CRYPTO 2008) to a factor qh2/3q_h^{2/3}. Up to now, the gap between qh2/3q_h^{2/3} and qhq_h remained open. In this paper, we show that the security proof using the Forking Lemma is essentially the best possible. Namely, under the OMDL assumption, any algebraic reduction must lose a factor f(εF)qhf(\varepsilon_F)q_h in its time-to-success ratio, where f≤1f\le 1 is a function that remains close to 1 as long as εF\varepsilon_F is noticeably smaller than 1. Using a formulation in terms of expected-time and queries algorithms, we obtain an optimal loss factor Ω(qh)\Omega(q_h), independently of εF\varepsilon_F. These results apply to other signature schemes based on one-way group homomorphisms, such as the Guillou-Quisquater signature scheme

    A Note on the Indifferentiability of the 10-Round Feistel Construction

    Get PDF
    Holenstein et al. (STOC 2011) have shown that the Feistel construction with fourteen rounds and public random round functions is indifferentiable from a random permutation. In the same paper, they pointed out that a previous proof for the 10-round Feistel construction by Seurin (PhD thesis) was flawed. However, they left open the question of whether the proof could be patched (leaving hope that the simulator described by Seurin could still be used to prove indifferentiability of the 10-round Feistel construction). In this note, we show that the proof cannot be patched (and hence that the simulator described by Seurin cannot be used to prove the indifferentiability of the 10-round Feistel construction) by describing a distinguishing attack that succeeds with probability close to one against this simulator. We stress that this does not imply that the 10-round Feistel construction is not indifferentiable from a random permutation (since our attack does not exclude the existence of a different simulator that would work)

    EWCDM: An Efficient, Beyond-Birthday Secure, Nonce-Misuse Resistant MAC

    Get PDF
    We propose a nonce-based MAC construction called EWCDM (Encrypted Wegman-Carter with Davies-Meyer), based on an almost xor-universal hash function and a block cipher, with the following properties: (i) it is simple and efficient, requiring only two calls to the block cipher, one of which can be carried out in parallel to the hash function computation; (ii) it is provably secure beyond the birthday bound when nonces are not reused; (iii) it provably retains security up to the birthday bound in case of nonce misuse. Our construction is a simple modification of the Encrypted Wegman-Carter construction, which is known to achieve only (i) and (iii) when based on a block cipher. Underlying our new construction is a new PRP-to-PRF conversion method coined Encrypted Davies-Meyer, which turns a pair of secret random permutations into a function which is provably indistinguishable from a perfectly random function up to at least 22n/32^{2n/3} queries, where nn is the bit-length of the domain of the permutations

    Beyond-Birthday-Bound Security for Tweakable Even-Mansour Ciphers with Linear Tweak and Key Mixing

    Get PDF
    The iterated Even-Mansour construction defines a block cipher from a tuple of public nn-bit permutations (P1,…,Pr)(P_1,\ldots,P_r) by alternatively xoring some nn-bit round key kik_i, i=0,…,ri=0,\ldots,r, and applying permutation PiP_i to the state. The \emph{tweakable} Even-Mansour construction generalizes the conventional Even-Mansour construction by replacing the nn-bit round keys by nn-bit strings derived from a master key \emph{and a tweak}, thereby defining a tweakable block cipher. Constructions of this type have been previously analyzed, but they were either secure only up to the birthday bound, or they used a nonlinear mixing function of the key and the tweak (typically, multiplication of the key and the tweak seen as elements of some finite field) which might be costly to implement. In this paper, we tackle the question of whether it is possible to achieve beyond-birthday-bound security for such a construction by using only linear operations for mixing the key and the tweak into the state. We answer positively, describing a 4-round construction with a 2n2n-bit master key and an nn-bit tweak which is provably secure in the Random Permutation Model up to roughly 22n/32^{2n/3} adversarial queries

    Strengthening the Known-Key Security Notion for Block Ciphers

    Get PDF
    We reconsider the formalization of known-key attacks against ideal primitive-based block ciphers. This was previously tackled by Andreeva, Bogdanov, and Mennink (FSE 2013), who introduced the notion of known-key indifferentiability. Our starting point is the observation, previously made by Cogliati and Seurin (EUROCRYPT 2015), that this notion, which considers only a single known key available to the attacker, is too weak in some settings to fully capture what one might expect from a block cipher informally deemed resistant to known-key attacks. Hence, we introduce a stronger variant of known-key indifferentiability, where the adversary is given multiple known keys to ``play\u27\u27 with, the informal goal being that the block cipher construction must behave as an independent random permutation for each of these known keys. Our main result is that the 9-round iterated Even-Mansour construction (with the trivial key-schedule, i.e., the same round key xored between permutations) achieves our new ``multiple\u27\u27 known-keys indifferentiability notion, which contrasts with the previous result of Andreeva et al. that one single round is sufficient when only a single known key is considered. We also show that the 3-round iterated Even-Mansour construction achieves the weaker notion of multiple known-keys sequential indifferentiability, which implies in particular that it is correlation intractable with respect to relations involving any (polynomial) number of known keys

    Counter-in-Tweak: Authenticated Encryption Modes for Tweakable Block Ciphers

    Get PDF
    We propose the Synthetic Counter-in-Tweak (SCT) mode, which turns a tweakable block cipher into a nonce-based authenticated encryption scheme (with associated data). The SCT mode combines in a SIV-like manner a Wegman-Carter MAC inspired from PMAC for the authentication part and a new counter-like mode for the encryption part, with the unusual property that the counter is applied on the tweak input of the underlying tweakable block cipher rather than on the plaintext input. Unlike many previous authenticated encryption modes, SCT enjoys provable security beyond the birthday bound (and even up to roughly 2n2^n tweakable block cipher calls, where nn is the block length, when the tweak length is sufficiently large) in the nonce-respecting scenario where nonces are never repeated. In addition, SCT ensures security up to the birthday bound even when nonces are reused, in the strong nonce-misuse resistance sense (MRAE) of Rogaway and Shrimpton (EUROCRYPT 2006). To the best of our knowledge, this is the first authenticated encryption mode that provides at the same time close-to-optimal security in the nonce-respecting scenario and birthday-bound security for the nonce-misuse scenario. While two passes are necessary to achieve MRAE-security, our mode enjoys a number of desirable features: it is simple, parallelizable, it requires the encryption direction only, it is particularly efficient for small messages compared to other nonce-misuse resistant schemes (no precomputation is required) and it allows incremental update of associated data

    Analysis of Intermediate Field Systems

    Get PDF
    We study a new generic trapdoor for public key multivariate cryptosystems, called IFS for Intermediate Field Systems, which can be seen as dual to HFE. This new trapdoor relies on the possibility to invert a system of quadratic multivariate equations with few (logarithmic with respect to the security parameter) unknowns on an intermediate field thanks to Groebner bases algorithms. We provide a comprehensive study of the security of this trapdoor and show that it is equivalent to the security provided by HFE. Therefore, while insecure in its basic form, this trapdoor may reveal quite attractive when used with, e.g., the minus modifier

    Tweaking Even-Mansour Ciphers

    Get PDF
    We study how to construct efficient tweakable block ciphers in the Random Permutation model, where all parties have access to public random permutation oracles. We propose a construction that combines, more efficiently than by mere black-box composition, the CLRW construction (which turns a traditional block cipher into a tweakable block cipher) of Landecker et al. (CRYPTO 2012) and the iterated Even-Mansour construction (which turns a tuple of public permutations into a traditional block cipher) that has received considerable attention since the work of Bogdanov et al. (EUROCRYPT 2012). More concretely, we introduce the (one-round) tweakable Even-Mansour (TEM) cipher, constructed from a single nn-bit permutation PP and a uniform and almost XOR-universal family of hash functions (Hk)(H_k) from some tweak space to {0,1}n\{0,1\}^n, and defined as (k,t,x)↦Hk(t)⊕P(Hk(t)⊕x)(k,t,x)\mapsto H_k(t)\oplus P(H_k(t)\oplus x), where kk is the key, tt is the tweak, and xx is the nn-bit message, as well as its generalization obtained by cascading rr independently keyed rounds of this construction. Our main result is a security bound up to approximately 22n/32^{2n/3} adversarial queries against adaptive chosen-plaintext and ciphertext distinguishers for the two-round TEM construction, using Patarin\u27s H-coefficients technique. We also provide an analysis based on the coupling technique showing that asymptotically, as the number of rounds rr grows, the security provided by the rr-round TEM construction approaches the information-theoretic bound of 2n2^n adversarial queries

    On the Public Indifferentiability and Correlation Intractability of the 6-Round Feistel Construction

    Get PDF
    We show that the Feistel construction with six rounds and random round functions is publicly indifferentiable from a random invertible permutation (a result that is not known to hold for full indifferentiability). Public indifferentiability (pub-indifferentiability for short) is a variant of indifferentiability introduced by Yoneyama et al. \cite{YoneyamaMO09} and Dodis et al. \cite{DodisRS09} where the simulator knows all queries made by the distinguisher to the primitive it tries to simulate, and is useful to argue the security of cryptosystems where all the queries to the ideal primitive are public (as e.g. in many digital signature schemes). To prove the result, we introduce a new and simpler variant of indifferentiability, that we call sequential indifferentiability (seq-indifferentiability for short) and show that this notion is in fact equivalent to pub-indifferentiability for stateless ideal primitives. We then prove that the 6-round Feistel construction is seq-indifferentiable from a random invertible permutation. We also observe that sequential indifferentiability implies correlation intractability, so that the Feistel construction with six rounds and random round functions yields a correlation intractable invertible permutation, a notion we define analogously to correlation intractable functions introduced by Canetti et al. \cite{CanettiGH98}
    corecore